FORMATION OF THE 2-NITRO DERIVATIVE DURING OXIDATION OF 4,5-DIPHENYLIMIDAZOLE TO BENZIL WITH NITRIC ACID

A. Yu. Yagovkin and A. A. Bakibaev

The imidazole ring has high resistance to the destructive action of various oxidizing agents, including nitric acid. The 2-nitro derivatives of imidazole cannot be synthesized by direct substitution in the imidazole ring [1]. However, the boiling of 4,5-diphenylimidazole with a nitrating mixture in acetic acid leads to the formation of 4,5-di(4-nitrophenyl)imidazole or 4,4'-dinitrobenzil [2].

We established that the reaction of 4,5-diphenylimidazole with an excess of nitric acid (more than 2 moles) in glacial acetic acid at 70-80°C for 4 h gave a high yield of benzil (II).

A reduction in the amount of nitric acid to 1-2 moles for 5 min led to the formation of 2-nitro-4,5-diphenylimidazole (I) with a quantitative yield. The latter was also formed quantitatively when the authentic 4,5-diphenylimidazole nitrate that we prepared was heated in acetic acid. The nitration of 4,5-diphenylimidazole and its nitrate only begins above 70°C (TLC). It is curious that N-acetyl-4,5-diphenylimidazole previously obtained by boiling 4,5-diphenylimidazole in acetic anhydride does not react with an excess (1-6 moles) of nitric acid for 4 h.

Thus, 2-nitro-4,5-diphenylimidazole is oxidized to benzil (II) by the action of nitric acid at 70-80°C. Compound (I) reacts with dimethyl sulfate in the presence of pyridine with the formation of 1-methyl-2-nitro-4,5-diphenylimidazole.

2-Nitro-4,5-diphenylimidazole (I) $(C_{15}H_{11}N_3O_2)$. The yield was 100%; mp 200°C. Published data [3]: mp 200-202°C. IR spectrum, cm⁻¹: 1530, 1360 (NO₂). PMR spectrum (DMSO-d₆): 10.0 (1H, b, NH), 7.2-7.6 (10H, m, Ph). ¹³C NMR spectrum (DMSO + Cr³⁺): 144.3 (C—NO₂), 133.74 (C₍₄₎, C₍₅₎ of imidazole), 128.89 (Ph, C₍₁₎), 126.95 (Ph, C₍₂₎, C₍₃₎, C₍₄₎). Mass spectrum (12 eV), m/z: M⁺ 266, (M - NO₂)⁺ 220.

Benzil (II). The yield was 87%; mp 95-97°C.

1-Methyl-2-nitro-4,5-diphenylimidazole (III) ($C_{16}H_{13}N_3O_2$). The yield was 76%; mp 163-168°C. PMR spectrum (DMSO-d₆): 3.75 (3H, s, Me), 7.1-7.6 (10H, m, Ph).

The elemental analyses of all the synthesized compounds agreed with the calculated data.

REFERENCES

- 1. R. Elderfield (ed.), The Chemistry of Heterocyclic Compounds [Russian translation], Vol. 5, IL, Moscow (1956).
- 2. T. Es and O. G. Backeberg, J. Chem. Soc., No. 3, 1363 (1963).
- 3. M. V. Povstyanoi, V. A. Idzikovskii, and V. P. Kruglenko, Khim. Geterotsikl. Soedin., No. 9, 1284 (1981).

Tomsk Polytechnical University, Tomsk. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1696-1697, December, 1995. Original article submitted November 12, 1995.